Dr. Patrick LaRiviere pjlarivi@uchicago.edu Dr. Rudolf Oldenburg rudolfo@mbl.edu
This course, consisting of lecture and extensive inquiry based lab work, will cover the same essential material as PHYS 12300 and can be substituted for PHYS 12300 in all biological sciences programmatic requirements. However, it will also exploit opportunities and resources unique to the MBL. The course will also provide students the opportunity to understand the physical principles underlying some of the instruments they will use in other portions of the course, such as fluorescence and polarized-light microscopes and the acoustic doppler current profilers and chirp-based SONAR systems that will be used on the research vessel. The course will have a significant research and exploration component.
Dr. Karen Echeverri kecheverri@mbl.edu
This course will focus on contemporary stem cell biology and regeneration with emphasis on molecular mechanisms and applications. The course will cover the history of stem cell discoveries through the latest advances, including genome-wide profiling, targeted gene editing, and other techniques used in stem cell and regeneration research. A portion of the course will consist of modules where specific stem cell types will be discussed together with relevant diseases they could impact (i.e. stem cells and neurodegeneration). A focus of the course will be around how discoveries in aquatic research organisms have driven the progress in regeneration biology. In this classroom and lab based course, students will have the opportunity to work on an independent research project under the supervision of a Resident Faculty at MBL. The lab portion of the course will introduce and provide hands-on experience on experimental approaches and techniques used in cell biology, development, and regeneration research. There will be a focus on microscopy (brightfield, fluorescence, high-resolution microscopy) and use of open source software to analyze images. There will be an introduction into the use of stains, antibodies, and genetically-encoded fluorescent markers to analyze cellular structures in aquatic organisms that include axolotls, nematostella, worms, cephlapods and zebrafish. In addition, this course will provide hands-on experience on molecular tools to generate DNA constructs and introduce the use of CRISPR as an important tool to knockdown gene function in genetic and non-genetic experimental systems.
Dr. Andrew Gillis agillis@mbl.edu
This course presents an overview of the diversity of living organisms, including archaea, bacteria, single-celled eukaryotes, fungi, plants, and animals, with an emphasis on their evolutionary histories, relationships, and the biological and evolutionary implications of the characteristic features of each group. We will explore how these different lineages have evolved remarkable solutions to challenges in locomotion, metabolism, and life in extreme environments. Work in the lab will take advantage of the diversity of organisms that live around, or are maintained at, The Marine Biological Laboratory in Woods Hole, MA.
Dr. Louis Kerr lkerr@mbl.edu Dr. Carsten Wolff cwolff@mbl.edu
Imaging has been, and continues to be, a critical tool in biological research. This course will introduce students to the fundamentals of imaging, but will quickly advance to discussing cutting edge advancements in the field. More importantly, the course will focus on hands-on opportunities to use state-of-the art microscopes, as well as provide an opportunity for students to design and execute an original research project which makes use of the skills gained during the course. Students will begin by building their own, simple microscopes, and then move on to learning how to use confocal and electron microscopes, as well as mastering techniques for fixed and live sample preparation. In addition, students will analyze the data they collect using several software tools. Lectures will be designed to introduce each topic, as well as highlight limitations and challenges in the field.
SEA (Sea Education Association)
This three-week course addresses fundamental oceanographic processes that maintain and structure marine biodiversity and productivity, including physical oceanographic processes of dispersal and upwelling, environmental selection, biogeography, nutrient dynamics, primary production, and food web dynamics. Students will design an original research project during an initial shore component at MBL, and then address their own questions by collecting samples and data aboard Sea Education Association (SEA)’s oceanographic research sailing vessel, the SSV Corwith Cramer, on an offshore voyage. During a 9-day voyage at sea, students will deploy oceanographic instruments, interpret various data streams, and work as research teams and watch members as they navigate and sail the vessel. During the final few days of the course on shore, students will analyze and interpret the data they collected and present their results in written and oral reports.
Dr. Roger Hanlon rhanlon@mbl.edu
This course takes an integrative approach to understanding a neurally controlled system of dynamic defense against visual predators. Camouflage is a widespread form of defense throughout the animal kingdom in every known habitat - land or sea. In the oceans, cephalopods (cuttlefish, octopus, squid) have evolved a sophisticated sensorimotor system called Rapid Adaptive Coloration, which can instantaneously change their total body appearance within a fraction of a second to range from highly camouflaged to startlingly conspicuous for a wide range of behaviors. The forms and functions of this dynamic system will be teased apart in integrative fashion in a top-down approach from ecology to organismal biology to organs, tissues and cells. The course touches on neural anatomy, sensation, visual perception (including psychophysics) and animal behavior. There are also applied biology aspects of this system that will be presented as well.
Frances Lee frances.anne.lee@gmail.com
The curriculum for this course will use four methodologies in the understanding of images: Observation, Analysis, Production and Critique. We will work through a series of individual and group assignments to understand how images have meaning and can communicate as a kind of language. Taught on site at the Marine Biology Laboratory, we will use the surrounding environment of the lab and landscape to think through the topics of the course such as nature and culture, illusion, camouflage and adaptive color, analogy, metaphor, subjectivity and the role of the author. Students will use the formal concepts of line, value, texture, color, scale, repetition and positive/negative space to think critically about how images mediate knowledge. The goal of this intensive studio course is to investigate aspects of visual art through hands-on processes, research into historical and contemporary artistic practices, and critical discussions in order to develop our ability to read and respond to the visual world.
- Visual Language: On Images is an optional course. Completion will fulfill the general education requirement in the arts. If you have already fulfilled your core arts requirement and would like to take this course, you will get credit for a general elective.